Content Free Learning (in a world of AI)

Yesterday, when I took a look at how it’s easier to make school work Google proof than it is to make school work AI proof, I said:

How do we bolster creativity and productivity with AND without the use of Artificial Intelligence?

This got me thinking about using AI effectively, and that led me to thinking about ‘content free’ learning. Before I go further, I’d like to define that term. By ‘content free’ I do NOT mean that there is no content. Rather, what I mean is learning regardless of content. That is to say, it doesn’t matter if it’s Math, English, Social Studies, Science, or any other subject, the learning is the same (or at least similar). So keeping with the Artificial Intelligence theme, here are some questions we can ask to promote creativity and productivity in any AI infused classroom or lesson:

“What questions should we ask ourselves before we ask AI?”
“What’s a better question to ask the AI?”
“How would you improve on this response?”
“What would your prompt be to create an image for this story?”
“How could we get to a more desired response faster?”
“What biases do you notice?”
“Who is our audience, and how do we let the AI know this?”
“How do we make these results more engaging for the audience?”
“If you had to argue against this AI, what are 3 points you or your partner would start with?”

In a Math class, solving a word problem, you could ask AI, “What are the ‘knowns and unknowns’ in the question?”

In a Social Studies class, looking at a historical event, you could ask AI, “What else was happening in the world during this event?” Or you could have it create narratives from different perspectives, before having a debate from the different perspectives.

In each of these cases, there can be discussion about the AI responses which are what students are developing and thinking about… and learning about. The subject matter can be vastly different but the students are asked to think metacognitively about the questions and tasks you give AI, or to do the same with the results an AI produces.

A great example of this is the Foundations of Inquiry courses we offer at Inquiry Hub. Student do projects on any topics of interest, and they are assessed on their learning regardless of the content.  See the chart of Curricular Competencies and Content in the course description. As described in the Goals and Rationale:

At its heart inquiry is a process of metacognition. The purpose of this course is to bring this metacognition to the forefront AS the learning and have students demonstrate their ability to identify the various forms of inquiry – across domains and disciplines and the stages of inquiry as they move through them, experience failure and stuckness at each level. Foundations of Inquiry 10 recognizes that competence in an area of study requires factual knowledge organized around conceptual frameworks to facilitate knowledge retrieval and application. Classroom activities are designed to develop understanding through in-depth study both within and outside the required curriculum.

This delves into the idea of learning and failure, which I’ve spoke a lot about before.In each of the examples above, we are asking students challenging questions. We are asking them to critically think about what we are asking AI; to think about how we can improve on AI responses; or, to think about how to use AI responses as a launching point to new questions and directions. The use of AI isn’t to ‘get to’ the answer but rather to get to a challenging place to stump students and force them to think critically about the questions and responses they get from AI.

And sometimes the activity will be too easy, other times too hard, but even those become learning opportunities… content free learning opportunities.

Please comment....

This site uses Akismet to reduce spam. Learn how your comment data is processed.